Congruence-simplicity of Steinberg algebras of non-Hausdorff ample groupoids over semifields

نویسندگان

چکیده

We investigate the algebra of an ample groupoid, introduced by Steinberg, over a semifield S. In particular, we obtain complete characterization congruence-simpleness for Steinberg algebras second-countable groupoids, extending well-known characterizations when S is field. apply our congruence-simplicity results to tight groupoids inverse semigroup representations associated self-similar graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

amenability of banach algebras

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

15 صفحه اول

Congruence Lattices of Congruence Semidistributive Algebras

Nearly twenty years ago, two of the authors wrote a paper on congruence lattices of semilattices [9]. The problem of finding a really useful characterization of congruence lattices of finite semilattices seemed too hard for us, so we went on to other things. Thus when Steve Seif asked one of us at the October 1990 meeting of the AMS in Amherst what we had learned in the meantime, the answer was...

متن کامل

Equivariant cohomology over Lie groupoids and Lie-Rinehart algebras

Using the language and terminology of relative homological algebra, in particular that of derived functors, we introduce equivariant cohomology over a general Lie-Rinehart algebra and equivariant de Rham cohomology over a locally trivial Lie groupoid in terms of suitably defined monads (also known as triples) and the associated standard constructions. This extends a characterization of equivari...

متن کامل

Distributive Congruence Lattices of Congruence-permutable Algebras

We prove that every distributive algebraic lattice with at most א1 compact elements is isomorphic to the normal subgroup lattice of some group and to the submodule lattice of some right module. The א1 bound is optimal, as we find a distributive algebraic lattice D with א2 compact elements that is not isomorphic to the congruence lattice of any algebra with almost permutable congruences (hence n...

متن کامل

A Hausdorff-young Inequality for Measured Groupoids

The classical Hausdorff-Young inequality for locally compact abelian groups states that, for 1 ≤ p ≤ 2, the L-norm of a function dominates the L-norm of its Fourier transform, where 1/p + 1/q = 1. By using the theory of non-commutative L-spaces and by reinterpreting the Fourier transform, R. Kunze (1958) [resp. M. Terp (1980)] extended this inequality to unimodular [resp. non-unimodular] groups...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2023

ISSN: ['1873-1376', '0022-4049']

DOI: https://doi.org/10.1016/j.jpaa.2022.107207